Modelling Clusters of Arbitrary Shape with Agglomerative - Partitional Clustering
نویسنده
چکیده
A problem with the modelling of clusters as d dimensional centroids is that centroids cannot relay much information about cluster shape i.e. elongated, circular, irregular etc... The Agglomerative-Partitional Clustering (APC) methodology introduced here attempts to remedy this situation by joining together centroids coexisting within regions of relatively high density with line segments. Interconnected clusters are then modelled as the line segment as opposed to the original centroids. All interconnected centroids are treated as a single cluster. In addition, APC also allows the analyst to derive a hierarchical clustering tree based on inter cluster density as opposed to distance. Performance comparisons with other clustering techniques are given.
منابع مشابه
Comparison of Agglomerative and Partitional Document Clustering Algorithms
Fast and high-quality document clustering algorithms play an important role in providing intuitive navigation and browsing mechanisms by organizing large amounts of information into a small number of meaningful clusters, and in greatly improving the retrieval performance either via cluster-driven dimensionality reduction, term-weighting, or query expansion. This ever-increasing importance of do...
متن کاملEfficient Clustering and Matching for Object Class Recognition
In this paper we address the problem of building object class representations based on local features and fast matching in a large database. We propose an efficient algorithm for hierarchical agglomerative clustering. We examine different agglomerative and partitional clustering strategies and compare the quality of obtained clusters. Our combination of partitional-agglomerative clustering give...
متن کاملImplementation of Hybrid Clustering Algorithm with Enhanced K-Means and Hierarchal Clustering
We are propose a hybrid clustering method, the methodology combines the strengths of both partitioning and agglomerative clustering methods. Clustering algorithms that build meaningful hierarchies out of large document collections are ideal tools for their interactive visualization and exploration as they provide data-views that are consistent, predictable, and at different levels of granularit...
متن کاملSoft Clustering Criterion Functions for Partitional Document Clustering
Recently published studies have shown that partitional clustering algorithms that optimize certain criterion functions, which measure key aspects of interand intra-cluster similarity, are very effective in producing hard clustering solutions for document datasets and outperform traditional partitional and agglomerative algorithms. In this paper we study the extent to which these criterion funct...
متن کاملHierarchical Clustering in Medical Document Collections: the BIC-Means Method
Hierarchical clustering of text collections is a key problem in document management and retrieval. In partitional hierarchical clustering, which is more efficient than its agglomerative counterpart, the entire collection is split into clusters and the individual clusters are further split until a heuristically-motivated termination criterion is met. In this paper, we define the BIC-means algori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997